IT Risk Management with Markov Logic Networks
نویسندگان
چکیده
We present a solution for modeling the dependencies of an IT infrastructure and determine the availability of components and services therein using Markov logic networks (MLN). MLNs offer a single representation of probability and first-order logic and are well suited to model dependencies and threats. We identify different kinds of dependency and show how they can be translated into an MLN. The MLN infrastructure model allows us to use marginal inference to predict the availability of IT infrastructure components and services. We demonstrate that our solution is well suited for supporting IT Risk management by analyzing the impact of threats and comparing risk mitigation efforts.
منابع مشابه
Validation of IT Risk Assessments with Markov Logic Networks
Risk assessments of big and complex IT infrastructures comprise numerous qualitative risk estimations for infrastructure assets. Qualitative risk estimations, however, are subjective and thus prone to errors. We present an approach to detect anomalies in the result of risk assessments by considering information about inter-dependencies between various building blocks of IT landscapes from enter...
متن کاملArrival probability in the stochastic networks with an established discrete time Markov chain
The probable lack of some arcs and nodes in the stochastic networks is considered in this paper, and its effect is shown as the arrival probability from a given source node to a given sink node. A discrete time Markov chain with an absorbing state is established in a directed acyclic network. Then, the probability of transition from the initial state to the absorbing state is computed. It is as...
متن کاملStructured Value Elimination with D-Separation Analysis
In the last ten years, new models based on Bayesian Networks (BN) emerged to handle large and complex systems. These new models can be divided in two: the unification with First Order Logic and uncertainty (Markov Logic Networks, Bayesian Logic) and Knowledge Base Construction Models (Probabilistic Relational Models, Multy-Entity Bayesian Networks, Relational Bayesian Networks). SKOOB, a consor...
متن کاملFinancial Risk Modeling with Markova Chain
Investors use different approaches to select optimal portfolio. so, Optimal investment choices according to return can be interpreted in different models. The traditional approach to allocate portfolio selection called a mean - variance explains. Another approach is Markov chain. Markov chain is a random process without memory. This means that the conditional probability distribution of the nex...
متن کاملExpected Duration of Dynamic Markov PERT Networks
Abstract : In this paper , we apply the stochastic dynamic programming to approximate the mean project completion time in dynamic Markov PERT networks. It is assumed that the activity durations are independent random variables with exponential distributions, but some social and economical problems influence the mean of activity durations. It is also assumed that the social problems evolve in ac...
متن کامل